3.558 \(\int \frac{\cot ^{\frac{3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=214 \[ -\frac{(25 A+7 i B) \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{6 a^2 d}+\frac{\left (\frac{1}{4}+\frac{i}{4}\right ) (A-i B) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac{(A+i B) \sqrt{\cot (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac{(11 A+5 i B) \sqrt{\cot (c+d x)}}{6 a d \sqrt{a+i a \tan (c+d x)}} \]

[Out]

((1/4 + I/4)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d
*x]]*Sqrt[Tan[c + d*x]])/(a^(3/2)*d) + ((A + I*B)*Sqrt[Cot[c + d*x]])/(3*d*(a + I*a*Tan[c + d*x])^(3/2)) + ((1
1*A + (5*I)*B)*Sqrt[Cot[c + d*x]])/(6*a*d*Sqrt[a + I*a*Tan[c + d*x]]) - ((25*A + (7*I)*B)*Sqrt[Cot[c + d*x]]*S
qrt[a + I*a*Tan[c + d*x]])/(6*a^2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.725347, antiderivative size = 214, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {4241, 3596, 3598, 12, 3544, 205} \[ -\frac{(25 A+7 i B) \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{6 a^2 d}+\frac{\left (\frac{1}{4}+\frac{i}{4}\right ) (A-i B) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{a^{3/2} d}+\frac{(A+i B) \sqrt{\cot (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac{(11 A+5 i B) \sqrt{\cot (c+d x)}}{6 a d \sqrt{a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(Cot[c + d*x]^(3/2)*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((1/4 + I/4)*(A - I*B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d
*x]]*Sqrt[Tan[c + d*x]])/(a^(3/2)*d) + ((A + I*B)*Sqrt[Cot[c + d*x]])/(3*d*(a + I*a*Tan[c + d*x])^(3/2)) + ((1
1*A + (5*I)*B)*Sqrt[Cot[c + d*x]])/(6*a*d*Sqrt[a + I*a*Tan[c + d*x]]) - ((25*A + (7*I)*B)*Sqrt[Cot[c + d*x]]*S
qrt[a + I*a*Tan[c + d*x]])/(6*a^2*d)

Rule 4241

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rule 3596

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*A + b*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(2
*f*m*(b*c - a*d)), x] + Dist[1/(2*a*m*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Si
mp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] &&  !GtQ[n,
0]

Rule 3598

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*d - B*c)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(f
*(n + 1)*(c^2 + d^2)), x] - Dist[1/(a*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n
 + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c*m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x],
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[n, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cot ^{\frac{3}{2}}(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx &=\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{A+B \tan (c+d x)}{\tan ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}} \, dx\\ &=\frac{(A+i B) \sqrt{\cot (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac{\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\frac{1}{2} a (7 A+i B)-2 a (i A-B) \tan (c+d x)}{\tan ^{\frac{3}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}} \, dx}{3 a^2}\\ &=\frac{(A+i B) \sqrt{\cot (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac{(11 A+5 i B) \sqrt{\cot (c+d x)}}{6 a d \sqrt{a+i a \tan (c+d x)}}+\frac{\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)} \left (\frac{1}{4} a^2 (25 A+7 i B)-\frac{1}{2} a^2 (11 i A-5 B) \tan (c+d x)\right )}{\tan ^{\frac{3}{2}}(c+d x)} \, dx}{3 a^4}\\ &=\frac{(A+i B) \sqrt{\cot (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac{(11 A+5 i B) \sqrt{\cot (c+d x)}}{6 a d \sqrt{a+i a \tan (c+d x)}}-\frac{(25 A+7 i B) \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{6 a^2 d}+\frac{\left (2 \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{3 a^3 (i A+B) \sqrt{a+i a \tan (c+d x)}}{8 \sqrt{\tan (c+d x)}} \, dx}{3 a^5}\\ &=\frac{(A+i B) \sqrt{\cot (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac{(11 A+5 i B) \sqrt{\cot (c+d x)}}{6 a d \sqrt{a+i a \tan (c+d x)}}-\frac{(25 A+7 i B) \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{6 a^2 d}+\frac{\left ((i A+B) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx}{4 a^2}\\ &=\frac{(A+i B) \sqrt{\cot (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac{(11 A+5 i B) \sqrt{\cot (c+d x)}}{6 a d \sqrt{a+i a \tan (c+d x)}}-\frac{(25 A+7 i B) \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{6 a^2 d}-\frac{\left (i (i A+B) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{2 d}\\ &=\frac{\left (\frac{1}{4}-\frac{i}{4}\right ) (i A+B) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{a^{3/2} d}+\frac{(A+i B) \sqrt{\cot (c+d x)}}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac{(11 A+5 i B) \sqrt{\cot (c+d x)}}{6 a d \sqrt{a+i a \tan (c+d x)}}-\frac{(25 A+7 i B) \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}{6 a^2 d}\\ \end{align*}

Mathematica [A]  time = 4.73117, size = 195, normalized size = 0.91 \[ -\frac{\cot ^{\frac{3}{2}}(c+d x) \left (-3 (A-i B) e^{3 i (c+d x)} \sqrt{-1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac{e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )+A \left (-13 e^{2 i (c+d x)}+38 e^{4 i (c+d x)}-1\right )+i B \left (-7 e^{2 i (c+d x)}+8 e^{4 i (c+d x)}-1\right )\right )}{3 a d \left (1+e^{2 i (c+d x)}\right )^2 (\cot (c+d x)+i) \sqrt{a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cot[c + d*x]^(3/2)*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

-((I*B*(-1 - 7*E^((2*I)*(c + d*x)) + 8*E^((4*I)*(c + d*x))) + A*(-1 - 13*E^((2*I)*(c + d*x)) + 38*E^((4*I)*(c
+ d*x))) - 3*(A - I*B)*E^((3*I)*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))]*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^
((2*I)*(c + d*x))]])*Cot[c + d*x]^(3/2))/(3*a*d*(1 + E^((2*I)*(c + d*x)))^2*(I + Cot[c + d*x])*Sqrt[a + I*a*Ta
n[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.673, size = 648, normalized size = 3. \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(3/2),x)

[Out]

(-1/12-1/12*I)/d/a^2*sin(d*x+c)*(cos(d*x+c)/sin(d*x+c))^(3/2)*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*(
25*A+7*B-25*I*A-3*I*A*sin(d*x+c)*2^(1/2)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/
sin(d*x+c))^(1/2)*2^(1/2))+4*I*B*cos(d*x+c)^3*sin(d*x+c)+11*I*A*cos(d*x+c)*sin(d*x+c)+5*I*B*sin(d*x+c)*cos(d*x
+c)+4*I*A*cos(d*x+c)^3*sin(d*x+c)+4*I*A*cos(d*x+c)^4+9*I*A*cos(d*x+c)^2-3*I*B*cos(d*x+c)^2-4*I*B*cos(d*x+c)^4-
3*I*B*cos(d*x+c)*2^(1/2)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*((cos(d*x+c)-1)/sin(d*x
+c))^(1/2)-9*A*cos(d*x+c)^2-4*A*cos(d*x+c)^4+11*A*cos(d*x+c)*sin(d*x+c)-5*B*cos(d*x+c)*sin(d*x+c)-4*B*cos(d*x+
c)^3*sin(d*x+c)+4*A*cos(d*x+c)^3*sin(d*x+c)+3*A*cos(d*x+c)*2^(1/2)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+
c))^(1/2)*2^(1/2))*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-3*I*B*2^(1/2)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+
c))^(1/2)*2^(1/2))*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)-3*B*sin(d*x+c)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan((
1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*2^(1/2)+7*I*B-4*cos(d*x+c)^4*B-3*B*cos(d*x+c)^2+3*A*((co
s(d*x+c)-1)/sin(d*x+c))^(1/2)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*2^(1/2))/cos(d*x+c
)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [B]  time = 1.96903, size = 1299, normalized size = 6.07 \begin{align*} \frac{{\left (3 \, \sqrt{\frac{1}{2}} a^{2} d \sqrt{\frac{i \, A^{2} + 2 \, A B - i \, B^{2}}{a^{3} d^{2}}} e^{\left (4 i \, d x + 4 i \, c\right )} \log \left (\frac{{\left (2 i \, \sqrt{\frac{1}{2}} a^{2} d \sqrt{\frac{i \, A^{2} + 2 \, A B - i \, B^{2}}{a^{3} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2}{\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} - i \, A - B\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 i \, A + 4 \, B}\right ) - 3 \, \sqrt{\frac{1}{2}} a^{2} d \sqrt{\frac{i \, A^{2} + 2 \, A B - i \, B^{2}}{a^{3} d^{2}}} e^{\left (4 i \, d x + 4 i \, c\right )} \log \left (\frac{{\left (-2 i \, \sqrt{\frac{1}{2}} a^{2} d \sqrt{\frac{i \, A^{2} + 2 \, A B - i \, B^{2}}{a^{3} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2}{\left ({\left (i \, A + B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} - i \, A - B\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 i \, A + 4 \, B}\right ) - \sqrt{2}{\left (2 \,{\left (19 \, A + 4 i \, B\right )} e^{\left (4 i \, d x + 4 i \, c\right )} -{\left (13 \, A + 7 i \, B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} - A - i \, B\right )} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-4 i \, d x - 4 i \, c\right )}}{12 \, a^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/12*(3*sqrt(1/2)*a^2*d*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^3*d^2))*e^(4*I*d*x + 4*I*c)*log((2*I*sqrt(1/2)*a^2*d*s
qrt((I*A^2 + 2*A*B - I*B^2)/(a^3*d^2))*e^(2*I*d*x + 2*I*c) + sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) - I*A - B)
*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c)
)*e^(-I*d*x - I*c)/(4*I*A + 4*B)) - 3*sqrt(1/2)*a^2*d*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^3*d^2))*e^(4*I*d*x + 4*I
*c)*log((-2*I*sqrt(1/2)*a^2*d*sqrt((I*A^2 + 2*A*B - I*B^2)/(a^3*d^2))*e^(2*I*d*x + 2*I*c) + sqrt(2)*((I*A + B)
*e^(2*I*d*x + 2*I*c) - I*A - B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x
 + 2*I*c) - 1))*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/(4*I*A + 4*B)) - sqrt(2)*(2*(19*A + 4*I*B)*e^(4*I*d*x + 4*I*
c) - (13*A + 7*I*B)*e^(2*I*d*x + 2*I*c) - A - I*B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*
c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*e^(I*d*x + I*c))*e^(-4*I*d*x - 4*I*c)/(a^2*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \tan \left (d x + c\right ) + A\right )} \cot \left (d x + c\right )^{\frac{3}{2}}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^(3/2)*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*cot(d*x + c)^(3/2)/(I*a*tan(d*x + c) + a)^(3/2), x)